
Calculating Parameters of De Bruijn Graphs

Written by

JOEL RICHARD MOORE
CS598-05, Project

In Partial Fulfillment of The Masters in Computer Science
The State University of New York Polytechnic Institute

DEC, 2014

Contents

1 Acknowledgments . 2
2 Abstract . 3
3 Introduction . 3
4 De Bruijn Graph Fundamentals . 4
5 A Class Library to Calculate Useful Parameters of De Bruijn Graphs 11
6 Functions to Calculate Distance Between Nodes 12
7 Generating Other Useful Parameters . 14
8 Generating Lists of Nodes at and within Prescribed Distance 21
9 Conclusion . 25
10 Bibliography . 26
11 Appendix 1–Calculating Distance . 27

11.1 Distance in Directed De Bruijn Graphs 27
11.2 Distance in Undirected De Bruijn Graphs 27

1

1 Acknowledgments
I owe a great deal of recognition for the research enclosed in this report to my technical
mentor Victoria Horan, who when approached and asked if I may assist her in researching
de Bruijn graphs, graciously and without hesitation welcomed my involvment. I extend my
sincere gratitude to her for her guidance and patience, the fruit of which this project
manifests.

I also wish to thank my project advisor, Jorge Novillo, for not only guiding me through
this project, but also through two of the most rigorous courses in the department
(Algorithms and Automata).

Also a special thank you to Todd Humiston, who is not only my branch manager but also
my professional mentor and the one person—above all others—whom I look up to for
sound professional direction. Thank you for giving me the opportunity of a lifetime.

Additionally, I wish to thank my benefactor, the United States Air Force; and the Air
Force Research Laboratory, Information Directorate at Rome, New York for giving me this
opportunity to pursue a master’s degree and the best career that I could ever imagine!

2

2 Abstract
Background: De Bruijn networks are a special topology of graphs that are interesting as
a network model because their physical properties endow high fault-tolerance and offer a
more robust communication than many other network models. Sometimes when an
arbitrary node within the network is excited, it is desirable to know which other nodes are
in the vicinity and through proximity may also be affected. In other words, given a node, x,
find all nodes within a distance d from x. An obscure subject, there is little literature
covering de Bruijn graphs outside of general characteristics and theory. In our research, we
have found no published mention of an algorithm to generate all nodes within a given
distance d from a node x.

Results: In this paper, we present our research to design and implement a library
compiled in MATLAB. This library calculates many useful de Bruijn graph parameters to
include calculating directed and undirected distance between nodes, producing adjacency
and minimum distance matrices, and some functions to generate lists of nodes that are
within a prescribed distance from an arbitrary node.

Conclusion: The resulting library works quite well. It produces the desired parameters
within our targeted tolerance of efficiency.

3 Introduction
Imagine you wish to set up a network to transmit radio messages between two

points, A and H. The two transmitters are far enough apart that they cannot communicate
directly and need at least two repeaters to relay messages under ideal conditions. Imagine
further that the area between A and H is fraught with interference and therefore reliable
communication improves with each addition of a communications path. Since the goal is to
set up a safe network configuration that would offer a reliable channel of communication,
what would be a good network model? In the interest of minimizing cost while ensuring an
acceptable tolerance of reliability, what number of relay towers and in what configuration
would be best? Keeping with the scenario, what if we were able to extrapolate by some
means that a particular tower was experiencing interference. Is there a way to identify
which communication paths transmit through the afflicted tower and avoid using them? In
this paper, we will show why a de Bruijn Network would be a good candidate model for the
above situation. In Section 4, we will discuss key properties and parameters of de Bruijn
Graphs. In Section 5 we will introduce a MATLAB library, DeBruijn, a collection of
functions written for the purpose of calculating and manipulating de Bruijn graph
parameters. In Section 6 we discuss functions of the DeBruijn library that may be used to
calculate distance between nodes. In Section 7 we further explore the DeBruijn library by
introducing many useful functions for calculating useful parameters of de Bruijn graphs.
Lastly, in Section 8 we introduce DeBruijn library functions for generating lists of nodes
both at a prescribed distance from a given node as well as functions that generate lists of
nodes within a prescribed distance of a specified node.

3

4 De Bruijn Graph Fundamentals
Before delving into the algorithms that calculate their parameters, generate

and manipulate their graphs, and exploit their physical properties to parse their structures
more efficiently, we will present a cursory introduction of de Bruijn graphs. The de Bruijn
graph is named after the Dutch mathematician Nicolaas Govert de Bruijn (1918-2012) who
discovered that in a d–ary sequence of order n there exists a cyclic string of length dn such
that every d–ary, n–tuple appears exactly once. In graph theory, a graph is typically
described by the notation G = (V,E) where V is the set of vertices (or nodes for a
network) and E is the set of edges (or arcs). A de Bruijn Graph is a directed
(unidirectional or bidirectional) graph of the form DG(d, n) where d denotes the number of
characters in the string “alphabet”, and n denotes a tuple size. Taken in conjunction the d-
character alphabet is systematically arranged into tuples of size n to uniquely identify each
node (this is where de Bruijn comes in). The number of nodes in a de Bruijn graph is
calculated with these values, dn, as well as the number of edges joining them, dn+1. It
should be pointed out that the d also has significance in that it represents the in-degree
and out-degree of each node. Figure 1 shows the de Bruijn graph DG(3, 1).

Figure 1: DG(3, 1)

Note that in this case d = 3, and this represents the in–degree and out–degree of the nodes.
Looking at the graph, one can see that each node has three edges that leave it and enter it.
Also note that n = 1, the string tuple or alphabet size. The string is used to label and
uniquely identify the nodes. Also a quick calculation (or glance) reveals that the number of
nodes is |V | = 31, and the number of edges is |E| = 31+1. Also notice that the values used
to label the edges are not weighted values, they are rather for identification purposes. For
example there are two edges joining nodes 0 and 1. Edge 01 is the edge leaving node 0 and
going to node 1. Similarly, the node leaving node 1 and traveling to node 0 is labeled 10.
One last point of interest from the figure is that it is a directed graph. One can tell this
because the edges have arrows indicating direction at the distal end from the node of origin.

4

In this paper, we are using the naming convention DG(d, n) for a directed graph and
UG(d, n) for an undirected graph.

As mentioned in the introduction, de Bruijn graphs have many properties that
make them appealing as a network model. At its essence a network is a structure of objects
joined by communications paths. The success of a network is how reliable these
communications paths work and how efficient they work. If a network with fewer nodes
and edges performs just as reliably as its more costly rival then it is a better network
model. De Bruijn graphs have relatively few edges; they are considered sparse networks.
Also their branching factor, or the number of children that each node points, is low yet
predictable. These are considered attractive features. Interestingly de Bruijn graphs also
boast numerous path alternatives. A Hamiltonian path is a traversal or route through a
graph that visits every node exactly once. If the path is a cycle, meaning that it starts and
ends at the same node, then it is a Hamiltonian cycle. By contrast, a Eulerian path, is a
traversal that visits once every edge in a graph. De Bruijn graphs boast many Hamiltonian
paths. In fact, it has been shown [1] that the number of Hamiltonian paths in a binary de
Bruijn graph is 22n−1−1. The graph of UG(2, 2) is illustrated in Figure 2. The yellow
highlighted edges show a Hamiltonian cycle starting and ending at node 00. The red edges
show a Hamiltonian path starting at node 00 and ending at 11. As predicted by the
formula above there are exactly 22

2−1−1 = 2 Hamiltonian paths, ({00, 01, 10, 11}
and {00, 10, 01, 11}). The advantage of having many path alternatives is greater fault
tolerance.

Figure 2: UG(2, 2)

5

De Bruijn graphs tend to be very symmetrical in appearance. The larger the
graph, the more nodes that it contains in its structure, the more intricate and aesthetically
appealing they become. The secret for this elegant appearance is found at the heart of the
algorithm that makes a de Bruijn graph. De Bruijn graphs grow through a process called
doubling. To double the graph DG(d, n) simply add one to the string tuple size
DG(d, n+ 1). In this new, doubled, graph there are now dn+1 nodes and dn+2 edges.
Figures 3 shows the first three doublings of DG(2, n) and Figure 4 shows the first three
doublings of DG(3, n). In sub graph Fig 3 (a) DG(2, 1), the graph has only two nodes, in
Fig 3 (b) DG(2, 2) has four nodes, and in Fig 3 (c) there are eight nodes. The reader
should note that it is only when doubling binary de Bruijn graphs (those graphs where
d = 2) that the number of nodes actually "doubles" after each expansion. By contrast,
when doubling de Bruijn graphs where d = 3 (as in Fig 4) the number of nodes triples, and
when doubling those graphs where d = 4 the nodes quadruples. In short, after doubling a
de Bruijn graph the number of nodes will be N = dn+1 which coorelates to the number of
edges in the previous graph. This fact gives us a hint about how to construct a doubled de
Bruijn graph. When doubling a de Bruijn graph, remove the original nodes and replace
every edge in the original graph with a new node. The new node takes on the label of the
edge that it replaced. For the edges use the rule that every node has d in- and out-degree
and use the left-bit shift and then toggle, that is systematically replace from 0 : d, the
right-most bit to find the current node’s neighbors. For example, in Fig 3 (c) node 111 goes
to two nodes because d = 2. By bit shifting one left and then toggling we see that the
node’s neighbors are 110 and itself 111. As an example note that in Fig 3 (a) graph
DG(2, 1) the edge joining nodes 0 and 1 is labeled 01. After doubling in Fig 3 (b) where
edge 01 was in DG(2, 1), it is now node 01.

Figure 3: Doubling DG(2, n)

6

Figure 4: Doubling DG(3, n)

If we examine the sequence of node counts in DG(2, n) we find that as the graph grows the
number of nodes are 2, 4, 8, 16, ... likewise for the graph DG(3, n) the number of nodes is
3, 9, 27, 81, It becomes evident that to calculate the number of nodes in a de Bruijn
graph after doubling it, one need only use the formula Nk+1 = Nkd. De Bruijn graphs are
symmetric because their growth rate is a geometric series.

Distance between two nodes in a de Bruijn graph (denoted DD(X, Y) where X
and Y are the nodes under evaluation) is calculated by counting the number of edges that
are in the shortest path between the two nodes. This is because the edge weights all have a
value of one. We have already discussed that the value n represents the string tuple size in
a de Bruijn graph. The value n also represents the diameter or largest distance between
any two nodes in a de Bruijn graph. Referring back to Fig 3 (c) DG(2, 3) for an example,
observe that the distance between nodes 000 and 111 is 3 and that the diameter of the
graph is also 3. When there are few nodes, as in DG(2, 3), it is easy to just look at the
graph and count the edges between nodes to figure out the distance between them, but for
a graph with many nodes it becomes tedious to count. The graph of DG(3, 3) above has
twenty-seven nodes, and it is already a challenge to figure out the distance between 000
and 122 by counting edges to figure out which path is the shortest. Imagine trying to count
the distance between nodes in DG(4, 3) (Figure 5). The person charged with this task
might begin to contemplate an easier way to calculate distance. Fortunately there is an
easier way. Dr. Zhen Liu writes two equations [3] for calculating the distance between
nodes in de Bruijn graphs. The distance between two nodes in a directed de Bruijn graph
can be calculated using the following equation

DD(d, n) = n− l,
where l = max{1 ≤ s ≤ n, xn−s+1xk−s+2 . . . xn = y1y2 . . . ys} (1)

When the maximum is an empty set, then the distance is n. What this algorithm does is
compare the two bit-strings for equality. First by checking the strings at full length, n,

7

Figure 5: Doubling DG(3, n)

failing a match the procedure decrements the strings’ size n− 1, ..., 0 by repeatedly shifting
the second string right until a substring match is found or no match is found (in which
case, l is 0).

Figure 6: Finding DD(000, 011) in DG(2, 3)

The second equation Liu gives is the distance for an undirected de Bruijn graph. This
equation is a bit more involved because there are twice the number of paths to check.

DD(d, n) = 2n− 1 + min{ min
1≤i,j≤n

(i− j − li,j(X, Y)), min
1≤i,j≤n

(−i+ j − ri,j(X, Y))} (2)

where,

li,j(X, Y) = max{s|s ≤ j, s ≤ n− i+ 1, xixi+1 . . . xi+s−1 = yj−s+1yj−s+2 . . . Yj} (3)

ri,j(X, Y) = max{s|s ≤ i, s ≤ n− j+1, xi−s+1xi−s+2 . . . xi = yjyj+1 . . . Yj+s−1} (4)

8

That is twice the diameter minus one plus the minimum number of maximum matches in
the two strings. To evaluate s, we are systematically comparing i and j, the subscripts of
node strings X and Y . This brute-force comparison checks the range of all combinations
that the radix of base d alphabet can assume in a string tuple of size n. As an example let
us calculate DD(010, 110) in UG(2, 3). The example that follows is a survey of the process
taken to solve the problem. Refer to Appendix 1 for a thorough treatment of this problem.

Step 1. Calculate the number of pairs of substrings that the subscripts i and j can form.

2n− 1 + min{ min
1≤i,j≤n

(i− j − (max{s})), min
1≤i,j≤n

(−i+ j − (max{s}))}

Since our tuples X and Y have tuple size 3 and there are 2 of them, we have 32

combinations to check.

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

Step 2. Calculate the maximums for every i, j combination.
There will be a LHS and a RHS maximum.

2n− 1 + min{ min
1≤i,j≤n

(i− j − (max{s})), min
1≤i,j≤n

(−i+ j − (max{s}))}

Figure 7: Comparing substrings i = 2, j = 3

For brevity we show an example of the comparison of substrings i = 2, j = 3 in Fig 6 and a
list of the other eight substring maximums in Fig 7. The complete procedure is included in
Appendix 1.

9

Figure 8: The computed maximums of all eight substring pairs

Step 3. Calculate the minimum i, j combination.

2n− 1 + min{ min
1≤i,j≤n

(i− j − (max{s})), min
1≤i,j≤n

(−i+ j − (max{s}))}

Figure 9: Finding the minimum i, j combinations

Step 4. Find the minimum of the two inner (LHS and RHS) minimums.

2n− l +min{ min
1≤i,j≤n

(i− j − (max{s})), min
1≤i,j≤n

(−i+ j − (max{s}))}

And finish solving
(2)(3)− 1 + (−3) = 2

Looking at the graph we see there are two routes.

10

Figure 10: UG(2, 3) showing two routes where UD(010, 110) = 2

These equations allow us to find the distance between nodes in the graphs without resorting
to manually counting edges to find the shortest path. The equations enable us to find the
distance between nodes of arbitrarily large graphs also, but there is still a hefty amount of
calculation involved in the process. Would it not be nice if there were some easier way?
Fortunately for us there is a much easier way: use a computer to do the work for us.

5 A Class Library to Calculate Useful Parameters of De
Bruijn Graphs

Over the past fifty-five years, the electronic computer has revolutionized the
way we perform calculations. Provided with an error free set of instructions, a computer
can accurately and precisely solve many tedious calculations in (or very nearly so) an
instant after pressing the "Enter" key—NP–Complete problems being a notable exception.
It is a tool yes, but some hold that it is a prosthetic extension to our own mental capacity
enabling us to achieve plateaus of computational competency dwarfing all previous ages of
civilization. Consider for example the pursuit of π. The significance of the ratio of the
circumference of a circle to its diameter was known by ancient Babylonians four thousand
years ago, yet up until 1945 the decimal expansion of π was known to a mere 808 places.
This monumental effort of human computation took mathematician D. F. Furguson nearly
a year to calculate[4]. In the following year, John von Neumann used the ENIAC to
calculate π to 2, 037 digits in just 70 hours. Since that time, with the aid of computers,
that expansion has grown to the twelve–trillionth digit. The computer has proven to be a
very handy tool indeed. So when faced with a problem like finding the distance between
nodes in a graph where manually counting or calculating them grows too laborious; then it
is time to automate the process.

There are many programming environments that one could choose from to
implement an algorithm like one to calculate Liu’s equation. One of which is MATLAB.
Like a functional programming language, MATLAB was expressly designed to perform

11

mathematical functions. Its syntax and grammar rules facilitate function design without
the overhead of imperative or spoken type languages—although MATLAB does port well
to most of these languages. In fact, many MATLAB commands are directly derived from
conventional mathematical symbols or keyboard adaptations (i.e., eˆ2 and max(A, B) are
legitimate commands in MATLAB). What is more, the scripts that constitute code in
MATLAB are compact programs in document type ".m" format that may be written using
any text editor. Using MATLAB, we have written a library, named DeBruijn, that
implements many useful functions to calculation de Bruijn graph parameters. Using
tailored functions, such as those that comprise the deBruijn library, greatly expedite the
process of new code development through code reuse and inheritance.

6 Functions to Calculate Distance Between Nodes
One of the first functions from the DeBruijn library is the function to

implement Liu’s distance formula. There are actually two functions, one for finding the
distance between nodes in a directed de Bruijn graph and another for distances in an
undirected graph. The code that follows implements the directed case. The code stays true
to the technique described above of performing string comparisons and bit-shifting strings.

1 %∗∗∗
2 % FUNCTION: DD(X,Y)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : DD f i nd s the d i s t ance between two nodes in a d i r e c t ed de Brui jn Graph .
5 % INPUTS: ’X ’ , a s t r i n g r ep r e s en t i ng a node in a de Brui jn Graph ;
6 % ’Y ’ , a second s t r i n g a l s o r ep r e s en t i ng a node in the same de Brui jn Graph .
7 % NOTE: Make sure inputs are in s i n g l e quotes , ’ ’ , to s i g n i f y char
8 % array .
9 % OUTPUTS: Returns an i n t e g e r value r ep r e s en t i ng the d i s t ance (number o f edges between X,Y) .

10 % AUTHOR/DATE: JMOORE, 7/14/15
11 %∗∗
12 func t i on d i s t ance = DD(X,Y)
13 n=length (X) ;
14 s=n ;
15 f l a g =0;
16 while (f l a g==0)
17 i f (strcmp (X,Y)==1)
18 f l a g =1;
19 else
20 i f (s>0)
21 X(1)=’ ’ ;
22 Y(s)=’ ’ ;
23 end %i f (s>0)
24 s=s −1;
25 i f (s==0)
26 f l a g =1;
27 end %i f (s==0)
28 end %i f (strcmp (X,Y)==1)
29 end %while
30 d i s t ance=n−s ;
31 end %funct i on d i s t ance = DD(X,Y)

Input parameters X and Y (lines 5 and 6) correspond to the string tuples used to represent
nodes in the de Bruijn graph. Line 13 loads the string tuple length into variable n, an
integer. s is another integer taking on the value of n and is later manipulated through
decrementing. The flag value initialized to 0 is used to guard when it is time to exit the

12

body of the while loop. The while loop systematically compares the two strings (line 28)
testing for equality, first at length s then, failing a match, at length s− 1. When the strings
are found not to be equal, they are each truncated, X (in line 21) gets cut at the tail end,
and Y (in line 22) get the head cut off. The loop continues in this way until either a match
is found or no match is found, when s = 0 triggering flag to equal 1, the exit criteria. After
exiting the loop (at line 29), line 30 assigns the value distance to be ‘k − s’ which is the
return value. Now let us have a little fun! Earlier when discussing techniques for manually
calculating the distance between nodes, we noted how tedious it would be to attempt to
visually count or manually calculate the distance between two nodes in the de Bruijn graph
DG(4, 3), a graph which boast 64 vertices and 256 arcs. Let us execute this challenge by
running DD(0010, 1101) in MATLAB’s command shell. The value "ans = 4" is returned
before one can fully depress the "ENTER" key. Interestingly, running UD(0100,
1101)—our next function—returns a "3", but there is a perceivably longer wait time
(perhaps enough time to let go of the "ENTER" key). What could account for this extra
processing time? One important issue when executing functions that calculate values where
the number of processes could become arbitrarily large is to consider how much time and
how much memory the calculation will require. As mentioned, de Bruijn graph growth is
modeled after a geometric series, and since the number of nodes is taken to be greater than
one, the series does not converge but could become very large, countably infinite. The time
effiiciency of DD(X, Y).m is linear, O(n), and so it is fairly effiicient.

The following function calculates the distance between nodes in an undirected
de Bruijn graph. Note how this function calls two helper functions.

1 %∗∗∗
2 % FUNCTION: UD(X,Y)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : For de Brui jn Graphs in an undi rected case ,
5 % th i s func t i on c a l c u l a t e s the d i s t ance between two nodes .
6 % INPUT: X,Y the two nodes s t r i n g s to a s s e s s .
7 % OUTPUT: di s tance , a s c a l e r value r ep r e s en t i ng the d i s t ance between X,Y.
8 % AUTHOR/DATE: VHORAN, 07/01/14
9 %∗∗

10 func t i on d i s t ance = UD(X, Y)
11 n=length (X) ;
12 M=zero s (n , n) ;
13 for i =1:n
14 for j =1:n
15 M(i , j)=i−j−max(LHS(i , j ,X,Y) ,RHS(j , i ,X,Y)) ;
16 end
17 end
18 d i s t ance=2∗n−1+min(min (M) , [] , 2) ;
19 end

As in the previous example, the variable n gets assigned the string length of X. In line 12
the value M is an n× n array initialized with zeros. The nested for loops that follow
re-populate M using a part of Liu’s equation (2). The two helper functions LHS() and
RHS() (which will be presented very soon) are used to iterate through the strings X and Y
using indicies i and j. On line 18, after exiting the loops, the value distance is calculated
using yet another part of Liu’s equation (2) and return. The time efficiency of UD(X, Y) is
cubic, O(n3), since it must iterate through a pair of nested for loops and within the inner
loop must visit LHS().m and RHS().m which each have a while loop. However, since
LHS().m and RHS().m are visited in series, their cost are linear. As an illustration of how
time efficiency affects processing time, let us contrast the number of processes required to

13

execute DG(2, 10) and UG(2, 10). At linear time, DG(2, 10) performs 210 = 1, 024
processes. Meanwhile, at cubic time, UG(2, 3) must perform (1024)3 = 1, 073, 741, 824
processes. If we had to store one byte of information per process, it would require just over
a gigabyte in memory for the undirected case. Now let us examine the helper functions
called by UG(d, n) .

1 %∗∗∗
2 % FUNCTION: LHS(i , j ,X,Y)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This func t i on i s used with func t i on UD(X, Y) .m
5 % INPUT: i , i t e r a t o r ; j , i t e r a t o r ; X, f i r s t s t r i n g ; Y, second s t r i n g
6 % OUTPUT: sMax the maximum value o f s .
7 % AUTHOR/DATE: VHORAN, 7/01/14
8 %∗∗∗
9 func t i on sMax=LHS(i , j ,X,Y)

10 n=length (X) ;
11 sMax=0;
12 s=0;
13 while (s<=j)&&(s<=n−i +1)
14 i f (strcmp (X(i : i+s−1) ,Y(j−s+1: j)))
15 sMax=s ;
16 end
17 s=s+1;
18 end
19 end

In LHS().m, the value of sMax is initialized to 0, but upon exiting the function it will hold
the value of the largest string comparison of the strings X and Y that exist when searching
the left hand side edge branching to look for the shortest path from X to Y . The value of s
also initialized to 0 serves double duty. Firstly, it is a loop guard, the exit criteria to leave
the loop is listed in the logical and comparison associated with the while statement. The
second purpose of s is to relay to sMax through assignment in line 15 the loop iteration
count where a match was found in line 14. Since s is incrementing (line 17) every iteration
of the loop, its value at assignment is guaranteed to be the maximum yet found, and so
upon exiting the loop the maximum string comparison that exist. Leaving now the first
helper function, the second helper function RHS().m is very similar.

1 %∗∗∗
2 % FUNCTION: RHS(i , j ,X,Y)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This func t i on i s used in con junct ion with func t i on
5 % INPUT: i , i t e r a t o r ; j , i t e r a t o r ; X, f i r s t s t r i n g ; Y, second s t r i n g
6 % OUTPUT: sMax the maximum value o f s for the r i gh t hand s i d e .
7 % AUTHOR/DATE: VHORAN, 7/01/14
8 %∗∗∗
9 func t i on sMax=RHS(i , j ,X,Y)

10 n=length (X) ;
11 sMax=0;
12 s=0;
13 while (s<=i)&&(s<=n−j +1)
14 i f (strcmp (X(i−s+1: i) ,Y(j : j+s−1)))
15 sMax=s ;
16 end
17 s=s+1;
18 end
19 end

In fact, the only difference is that the subscripts follow the right hand side branching edges.
For the sake of brevity, we omit the redundant code trace, leaving it for the reader’s
discretion for indulgence.

7 Generating Other Useful Parameters
In this section we present some DeBruijn library functions that return many

useful parameters. Although the following functions are useful enough to warrant their

14

inclusion in this project report, they do not, taken individually, justify their own dedicated
section. Therefore, we opted to present them all in this section. The first of these useful
functions that we present is one called GenerateNodes(d, n). This function returns the
string representation in the desired base–of–radix.

1 %∗∗
2 % FUNCTION: GenerateNodes (d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This method gene ra te s node names given input d , k .
5 % Node names (the s t r i n g de s i gna t i on o f every node) are in appropr ia te
6 % base o f rad ix and o f c o r r e c t s t r i n g length for t h e i r r e s p e c t i v e
7 % de Brui jn Graphs .
8 % INPUT: d , the alphabet s i z e ; n , the s t r i n g tup le s i z e .
9 % OUTPUT: The node names .

10 % AUTHOR/DATE: JMOORE, 07/15/14
11 %∗∗∗
12 func t i on nodes=GenerateNodes (d , n)
13 N=d^n ; %number o f nodes in the graph
14 nodes =c e l l (1 , n) ;
15 for i =1:N %each row in matrix
16 nodes{ i }=dec2base (i −1,d , n) ;
17 end %for i =1:N
18 end %funct i on nodes=generagteNodes (d , n)

Notice that in line 16 the MATLAB string library function dec2base(i-1, d, n) is called.
This is where the true work gets done in this function. This method converts the value
i− 1 from a decimal to one of base n. As an example we executed GenerateNodes(3, 2) in
MATLAB, and the output was.

ans = {00, 01, 02, 10, 11, 12, 20, 21, 22}
An alternative method for representing a graph, rather than in the vertex and

arc graph that has been used up until now in this paper, is to use an N–by–N matrix,
where N is the number of vertices in the graph. For example an adjacency matrix for a
graph is used to represent which vertices in a graph are adjacent to which other vertices.
The code to produce an adjacency matrix for DG(d, n) follows.

1 %∗∗
2 % FUNCTION: AdjacencyMat
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : AdjacencyMat produces the adjacency matrix
5 % for a de bru i jn graph without s e l f −po int ing node edge va lues counted .
6 % INPUTS: d = alphabet s i z e , n = s t r i n g length
7 % OUTPUTS: A = adjacency matrix for d i r e c t ed B(d , n)
8 % NOTE: Output Mod i f i ca t i on : t h i s func t i on has been modi f ied
9 % to return the adjacency matrix without s e l f −po int ing edge weights

10 % AUTHOR/DATE: JMOORE, 7/15/14
11 %∗∗∗
12 func t i on A = AdjacencyMat (d , n)
13 N=d^n ; %number o f nodes in the graph
14 for count=1:N
15 A = zero s (N) ; %adjacency matrix
16 for i =1:N %each row in matrix
17 x = dec2base (i −1,d , n) ; %convert row name to s t r i n g
18 for j =0:(d−1)
19 y=s t r c a t (x (2 : n) , num2str (j)) ; %add new l e t t e r to end
20 z=base2dec (y , d) ; %convert new s t r i n g to decimal
21 A(i , z+1)=1; %1 in A means edge from i to z+1
22 end %for j
23 end %for i
24 %th i s mod i f i c a t i on removes edge weight from the s e l f −po int ing nodes
25 for i =1:N
26 for j =1:N
27 i f (j==i)
28 A(i , j)=0;
29 end %i f
30 end %j
31 end %i
32 end %count
33 end %end fun

15

There are a few more remarkable MATLAB string library functions used in
AdjacencyMat(d, n). In line 17 we see the function dec2base(decimal, n, base) again. In
this case, the function converts decimal strings n to a base system specified in the third
parameter. Function base2dec() in line 20 performs the opposite operation. The function
num2string(j) converts a number j into a string. The function strcat(x, (2:n)) is used to
concatenate string x removing string positions 2 onward to the tail. Essentially what this
function does is revealed in line 21 where matrix A gets re–populated when adjacent nodes
are found. That is, it visits every row i placing a 1 at every column positioned z + 1 (N ,
the number of nodes minus d, the degree) distance apart. Lines 24–32 were added to the
function to exclude self–pointing nodes. When this method is executed using the following
command (as an example) in MATLAB "AdjacencyMat(2, 4)", the following adjacency
matrix is returned.

Table 1: Adjacency Matrix for DG(2, 4)

XXXX 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0011 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0100 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0101 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0110 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0111 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1000 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1001 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1010 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1011 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1100 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1101 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1110 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1111 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

To read the MATLAB output for AdjacencyMat(2, 4) (in Table 1 above), select a vertex
string identifier (name) from the row label (highlighted blue) and then scan across the row
associated with the vertex. If a 1 appears in the row then the vertex listed in the
corresponding column label (also highlighted blue) is adjacent to the vertex under
consideration. By contrast, a 0 in the row indicates that the vertex in the column label is
not adjacent to the vertex under consideration. From the standpoint of efficiency,
AdjacencyMat(d, n) is somewhat wasteful. The structure of the nested for loops alone
cause the function to go cubic. In addition to this, the MATLAB functions that are called
within AdjacencyMat(), strcat(), num2str(), and base2dec(), undoubtedly come at a cost as
well.

Another matrix that can be used to represent a de Bruijn graph is a distance
matrix. Unlike an adjacency matrix, a distance matrix shows the distance from every node
to every other node in the graph. In the DeBruijn library there is a method to generate a
directed distance matrix. The code follows.

16

1 % ∗∗
2 %FUNCTION: DirectedDistanceMat (d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This method gene ra te s a d i s t ance matrix for a d i r e c t ed
5 % de Brui jn Graph .
6 % INPUTS: d = alphabet s i z e , n = s t r i n g length
7 % OUTPUTS: D = matrix o f d i s t an c e s from a l l nodes to a l l nodes
8 % AUTHOR/DATE: JMOORE, 7/14/15
9 %∗∗

10 func t i on D=DirectedDistanceMat (d , n)
11 N=d^n ; %number o f nodes in the graph
12 nodes=ze ro s (N) ;
13 for i =1:N %each row in matrix
14 for j =1:N %each co l in matrix
15 nodes (i , j)=DD((dec2base (i −1,d , n)) , (dec2base (j −1,d , n))) ;
16 end %for j =1:N
17 end %for i =1:N
18 D=nodes ;
19 end %funct i on D=DirectedDistanceMat (d , n)

As you can see the function calls our library function DD(d, n).m in line 15. It does this
using a rather unusual approach by making the parameters d = dec2base(i− 1, d, n) and
n =dec2base(i− 1, d, n). In doing it this way, we are taking the loop counting indices i, for
the row, and j, for the column, and converting them to strings of size n with an alphabet
of size d. This has the effect of generating the string node names from their location in the
matrix. Once the node names are generated, DD(d, n).m computes the distance and
populates the nodes array. After exiting the outer for loop, nodes is returned. The cost of
DirectedDistanceMat(d, n).m is at least quadratic, O(n2), due to the nested for loops, and
this cost does not take into account the called library functions dec2base(). Since
DD(d, n).m is linear, it does not have much of an effect on efficiency. We executed
DirectedDistance(2, 4).m using MATLAB which returned the following distance matrix in
Table 2.

Table 2: Distance Matrix for DG(2, 4)

XXXX 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0001 2 0 2 2 1 1 1 1 2 2 2 2 2 2 2 2
0010 2 2 0 2 2 2 2 2 1 1 1 1 2 2 2 2
0011 2 2 2 0 2 2 2 2 2 2 2 2 1 1 1 1
0100 1 1 1 1 0 2 2 2 2 2 2 2 2 2 2 2
0101 2 2 2 2 1 0 1 1 2 2 2 2 2 2 2 2
0110 2 2 2 2 2 2 0 2 1 1 1 1 2 2 2 2
0111 2 2 2 2 2 2 2 0 2 2 2 2 1 1 1 1
1000 1 1 1 1 2 2 2 2 0 2 2 2 2 2 2 2
1001 2 2 2 2 1 1 1 1 2 0 2 2 2 2 2 2
1010 2 2 2 2 2 2 2 2 1 1 0 1 2 2 2 2
1011 2 2 2 2 2 2 2 2 2 2 2 0 1 1 1 1
1100 1 1 1 1 2 2 2 2 2 2 2 2 0 2 2 2
1101 2 2 2 2 1 1 1 1 2 2 2 2 2 0 2 2
1110 2 2 2 2 2 2 2 2 1 1 1 1 2 2 0 2
1111 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0

17

The undirected counterpart for DirectedDistanceMat(d, n) in the DeBruijn
library is UndirectedDistanceMat(d, n).m.

1 %∗∗
2 % FUNCTION: UndirectedDistanceMat (d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This method gene ra te s a d i s t ance matrix for an undi rected
5 % de Brui jn Graph .
6 % INPUT: d = alphabet s i z e , n = s t r i n g length
7 % OUTPUT: D = matrix o f d i s t an c e s from a l l nodes to a l l nodes
8 % AUTHOR/DATE: JMOORE, 07/15/14
9 %∗∗∗

10 func t i on U=UndirectedDistanceMat (d , n)
11 N=d^n ; %number o f nodes in the graph
12 nodes=ze ro s (N) ;
13 for i =1:N %each row in matrix
14 for j =1:N %each co l in matrix
15 nodes (i , j)=UD((dec2base (i −1,d , n)) , (dec2base (j −1,d , n))) ;
16 end %for j =1:N
17 end %for i =1:N
18 U=nodes ;
19 end %funct i on U=UndirectedDistanceMat (d , n)

About the only thing worth mentioning for this function is that the time complexity and
efficiency are very poor. This function calls UD(d, n).m which runs at O(n3) efficiency.
Exacerbating an already inefficient function, UndirectedDistanceMat() itself runs in O(N2)
efficiency. This brings our efficiency down to (O(n3)×O(N2)) = O(N3d2n). The distance
matrix representing the output for UndirectedDistanceMat(2, 4) is in Table 3.

Table 3: Distance Matrix for UG(2, 4)

XXXX 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 0 1 2 2 2 3 3 3 1 3 3 4 2 4 3 4
0001 1 0 1 1 2 2 2 2 1 2 3 3 2 3 3 3
0010 2 1 0 2 1 1 3 3 2 1 2 2 2 3 3 4
0011 2 1 2 0 2 3 1 1 2 1 3 2 2 2 2 2
0100 2 2 1 2 0 2 3 3 1 1 1 3 2 2 3 4
0101 3 2 1 3 2 0 2 2 3 2 1 1 3 2 3 3
0110 3 2 3 1 3 2 0 2 2 2 2 1 1 1 2 3
0111 3 2 3 1 3 2 2 0 3 2 3 1 2 2 1 1
1000 1 1 2 2 1 3 2 3 0 2 2 3 1 3 2 3
1001 3 2 1 1 1 2 2 2 2 0 2 3 1 3 2 3
1010 3 3 2 3 1 1 2 3 2 2 0 2 3 1 2 3
1011 4 3 2 2 3 1 1 1 3 3 2 0 2 1 2 2
1100 2 2 2 2 2 3 1 2 1 1 3 2 0 2 1 2
1101 4 3 3 2 2 2 1 2 3 3 1 1 2 0 1 2
1110 3 3 3 2 3 3 2 1 2 2 2 2 1 1 0 1
1111 4 3 4 2 4 3 3 1 3 3 3 2 2 2 1 0

18

As mentioned above, the reason AdjacencyMat(d, n).m (and the distance
matrices) is so inefficient is because of its nested loop structure. Looking at the returned
matrix in Table 1, one of the first things we notice is that the array is nearly filled with
zeros. This is because de Bruijn graphs are sparsely populated with relatively few nodes
when compared to their edges. The adjacency matrix goes through an awful lot of work to
produce a relatively small amount of useful information. This next function,
VectorNeighborGenerator(d, n).m returns the same useful information without the
superfluous generation and storage of useless data.

1 %∗∗
2 % FUNCTION: VectorNeighborGenerator (d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : Class gene ra t e s a l i s t (one−diment iona l matrix) with
5 % s i z e =(d^(n+1)−d) , (number o f nodes) ∗(the out−degree)−(l e s s s e l f −po in t e r s) .
6 % INPUT: d , the s t r i n g alphabet s i z e ; n , the s t r i n g tup le s i z e ;
7 % OUTPUT: A One−diment iona l vec tor where each indexed value conta in s
8 % a s t r i n g pa i r (separated by ’ : ’) and c on s i s t i n g o f a l l edge d i s t anc e s
9 % that equal one . The s t r i n g pa i r s coorespond to ’ out−neighbor : in−neighbor ’

10 % node pa i r s with a s i n g l e edge between them . The output i s comparable to
11 % the adjacencyMat (d , n) in that a l l ne ighbors are returned .
12 % AUTHOR/DATE: JMOORE, 07/15/14
13 %∗∗∗
14 func t i on E=VectorNeighborGenerator (d , n)
15 N=d^n ; %|V|
16 s i z e=N∗d−d ;
17 nodes=GenerateNodes (d , n) ; %c a l l s ex t e rna l method , populates 1−d vector the de Brui jn Graph node s t r i n g s

(note : O(n))
18 edges=c e l l (1 , s i z e) ; %at output , w i l l conta in a l l ne ighbor nodes at d i s t ance =1.
19 nNeighbor=0;
20 count=1; %works as an index for edges
21 currentNode=1; %along with nNeighbor works as i n d i c i e s for nodes c e l l array .
22 for i =1: s i z e+d %s i z e + d i s minimum number o f i t e r a t i o n s found so f a r
23 nNeighbor=nNeighbor+1;
24 i f (nNeighbor>N) %r o l l s over nNeighbor counter once i t r eaches N
25 nNeighbor=1;
26 end %i f (nNeighbor>N)
27 i f (~ strcmp (nodes{ currentNode } , nodes {nNeighbor })) %No s e l f −po int ing nodes
28 edges {count−1}=s t r c a t (nodes{ currentNode } ,char (’ : ’) , nodes{nNeighbor }) ; %assignment ne ighbors to

edges array
29 else
30 i f (count~=1) %sk ip the f i r s t one
31 count=count −1;
32 end %i f (count~=1)
33 end %i f (~ strcmp (nodes{ currentNode } , nodes {nNeighbor }))
34 i f ((mod(i , d)==0)&&(nNeighbor~=0)) %increment to next node a f t e r d i t e r a t i o n s
35 currentNode=currentNode+1;
36 end %i f ((mod(i , d)==0)&&(nNeighbor~=0))
37 count=count+1;
38 end %for 1 : s i z e+d
39 E=edges ;
40 end %fun

Running this method using the same parameters as used for AdjacencyMat(2, 4) in the
MATLAB command shell, we receive the following smaller data structure in return.

VectorNeighborGenerator(2, 4)

ans = {0000 : 0001, 0001 : 0010, 0001 : 0011, 0010 : 0100, 0010 : 0101, 0011 : 0110,

0011 : 0111, 0100 : 1000, 0100 : 1001, 0101 : 1010, 0101 : 1011, 0110 : 1010, 1100 : 1101,

0111 : 1110, 0111 : 1111, 1000 : 0000, 1000 : 0001, 1001 : 0010, 1001 : 0011, 1010 : 0100,

1010 : 0101, 1011 : 0110, 011 : 0111, 1100 : 1000, 1100 : 1001, 1101 : 1010, 1101 : 1011,

1110 : 1100, 1110 : 1101, 1111 : 1110}

This function is an improvement over AdjacencyMat(d, n) because it runs in linear time
complexity (omitting any costs attributed from the called function strcmp()). Another
improvement is that it does not return any useless values, and therefore instead of
returning d2n values it only returns dn+1 − d values. In the case of DG(2, 4) above it

19

returned 30 values instead of 256. This is an 88.3% improvement in efficiency. Tracing the
code, note that the variable size is instantiated to be N ∗ d− d. This is the length of the
return structure, a linear cell array called edges. This brings us to our first assertion
regarding the number of adjacent nodes in a directed de Bruijn graph:

In every directed de Bruijn graph, the number of nodes that are adjacent to one another
will always be N , the number of nodes, multiplied by d, the number of edges leaving these
nodes, less d, the number of self–pointing nodes in the graph.

Also note that in line 27 VectorNeighborGenerator(d, n) makes use of our library function
GenerateNodes(d, n).m. It does this so that it may perform a string comparison rather
than a nested loop search approach. The function uses a couple of variables currentNode to
represent the current node under consideration and nNeighbor. The variable nNeighbor
gets assigned by following a programmed route of nodes that are within the currentNode’s
"reach" when calculating its d –length hops. These hops follow a predictable path as
illustrated below in figure 10.

Figure 11: Hops in DG(3, 2)

This leads us to our second assertion:

If organized in numeric order, the edges in a directed de Bruijn graph can be grouped into N
sets of d values. These values, called hops, represent the sum of the nodes hopped–over by
an edge from the current node under consideration to the node its out–going edge points.
What is more, these sets of hops are further divided into d alternations, where the hop
direction changes. Taken together, this behavior makes a predictable pattern.

The significance of this observation is that since we can predict where node neighbors are
located, we need not blindly search through an entire graph to find them.

Using currentNode and nNeighbor in tandem, the linear array nodes is traversed,
currentNode simply iterating in sequence while nNeighbor follows its hopping route. In line
37 a negated comparison is made to insure that they are not equal, indicating a
self–pointing node, and if this comparison fails then the two nodes are assigned together as

20

one slot in the edges cell array separated by a colon (assignment done in line 38). After
the loop counting variable reaches i = size + d (in MATLAB array indices always start at
1) we exit the loop and return edges, the populated cell array.

8 Generating Lists of Nodes at and within Prescribed
Distance

The last set of functions involve the generation of two very similar yet distinctly
different lists of nodes. The first is a function to generate a list of all nodes within a
prescribed distance from a given node. The DeBruijn library function for generating a set
of all nodes contained in a ball–of–radius D follows.

1 %∗∗∗
2 % FUNCTION: DirectedBallDFromX (D,X, d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This func t i on re tu rns a l i s t o f a l l nodes w/ in D from X.
5 % INPUT: D, the d i s t ance to check ;
6 % X, the node to measure d i s t ance from ;
7 % d , alphabet s i z e ;
8 % n , s t r i n g tup le s i z e .
9 % OUTPUT: A c e l l array , ’ nodes ’ , the l i s t o f a l l nodes within D from X.

10 % AUTHOR/DATE: JMOORE/7/14/15
11 %∗∗∗
12 func t i on A = DirectedBallDFromX (D,X, d , n)
13 N=d^n ; %|A|
14 j =1; %a counter for l i s t nodes index ing
15 x=(base2dec (X, d)+1) ;
16 nodes=c e l l (1) ;
17 B=DirectedDistanceMat (d , n) ; %generate the d i s t ance array .
18 for i =1:N
19 i f (B(x , i)<=D)
20 nodes{ j}=dec2base (i −1,d , n) ;
21 j=j +1;
22 end %i f (B(1 , i)<=D)
23 end %for i =1:N
24 A=nodes ;
25 end %funct i on A = DirectedBallDFromX (D,X, d , n)

For example this function using a quintuple of parameters and produces the following
output.

DirectedBallDFromX(1, 01, 3, 2) ans = {01, 10, 11, 12}

This function calls DirectedDistanceMat(d, n).m after which it parses the matrix looking
for nodes within the specified distance, D = 1 from a specified node X=01 (line 19).
When found, these nodes within D are converted to the desired base and placed into the
cell array, nodes for return. The cost of DirectedBallDFromX().m is quadratic with respect
to N because DirectedDistanceMat().m is called within it.

The undirected counterpart function to DirectedBallDFromX(D, X, d, n).m is
called UndirectedBallDFromX(D, X, d, n).m. This function generates a list of nodes that
are within a specified distance from a specified node also, but the list returned has twice as
many nodes in it since the graph is undirected. This function also calls its appropriate
distance matrix, UndirectedDistanceMat(d, n).m, to assess the distances between nodes.

21

1 %∗∗∗
2 % FUNCTION: UndirectedBallDFromX (D, X, d , n)
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : This func t i on c a l c u l a t e s a l l nodes at a b a l l o f d i s t ance
5 % for an undi rected de Brui jn Graph .
6 % INPUT: D, the d i s t ance to check ;
7 % X, the node to measure d i s t ance from ;
8 % d , alphabet s i z e ;
9 % n , s t r i n g tup le s i z e .

10 % OUTPUT: Returns a l i s t o f a l l nodes w/ in D from X.
11 % AUTHOR/DATE: JMOORE, 07/15/14
12 %∗∗∗
13 func t i on A = UndirectedBallDFromX (D,X, d , n)
14 N=d^n ; %|A|
15 j =1; %a counter for l i s t nodes index ing
16 x=(base2dec (X, d)+1) ;
17 nodes=c e l l (1) ;
18 B=UndirectedDistanceMat (d , n) ; %generate the d i s t ance array .
19 for i =1:N
20 i f (B(x , i)<=D)
21 nodes{ j}=dec2base (i −1,d , n) ;
22 j=j +1;
23 end %i f (B(1 , i)<=D)
24 end %for i =1:N
25 A=nodes ;
26 end %funct i on A = UndirectedBallDFromX (D,X, d , n)

As expected UndirectedBallDFromX(X, D, d, n).m requires O(N3N2) time efficiency
because it calls UndirectedDistanceMat(d, n) that runs in O(N2) and that function calls
UD(d, n) that runs in O(n3) time efficiency. Although UndirectedDistanceMat(d, n) and
UD(d, n) work well, they are not at all efficient.

Let us examine an application of an undirected de Bruijn graph where the
function UndirectedBallDFromX(X, D, d, n).m is utilized. Returning to our radio network
scenario that was discussed in the Introduction, imagine a radio network modeled on the
undirected de Bruijn graph UG(2, 4) where the repeater tower, represented by node 1100
is experiencing interference. In order for our transmiter, node 0000, to reach our receiver,
node 1111, we must find a repeater tower path that avoids the defective tower. Executing
the function UndirectedBallDFromX(1100, 1, 2, 4) returns the list
{0110, 1000, 1001, 1100, 1110}. By avoiding transmission through these towers, a fault free
route can be determined. The shortest path is highlighted in green and it follows nodes
{0001, 0011, 0111, 1111} (see Figure 11).

22

Figure 12: Radio network DG(2, 4) showing avoidance of fault paths

The function DirectedAtDFromX(D, ’X’, d, n).m is similar to
DirectedDFromX() except that instead of locating all nodes within a given distance, the
function locates all nodes at the designated distance.

1 %∗∗
2 % FUNCTION: DirectedAtDFromX ()
3 % LIBRARY: DeBruijn
4 % DISCRIPTION : %This func t i on re tu rns a l i s t o f a l l nodes at D from X.
5 % INPUT: D, the d i s t ance to check ;
6 % X, the node to measure d i s t ance from ;
7 % d , alphabet s i z e ;
8 % n , s t r i n g tup le s i z e .
9 % OUTPUT: A c e l l array c a l l e d ’ nodes ’ , the l i s t o f a l l nodes at D from X.

10 % AUTHOR/DATE: JMOORE, 7/14/15
11 %∗∗
12 func t i on A = DirectedAtDFromX(D,X, d , n)
13 N=d^n ; %|A|
14 j =1; %a counter for l i s t nodes index ing
15 x=(base2dec (X, d)+1) ;
16 nodes=c e l l (1) ;
17 B=DirectedDistanceMat (d , n) ; %generate the d i s t ance array .
18 for i =1:N
19 i f (B(x , i)==D)
20 nodes{ j}=dec2base (i −1,d , n) ;
21 j=j +1;
22 end %i f (B(1 , i)<=D)
23 end %for i =1:N
24 A=nodes ;
25 end %funct i on A = DirectedAtDFromX(D,X, d , n)

For example this function using a quintuple of parameters and produces the following
output.

DirectedAtlDFromX(1, 01, 3, 2) ans = {10, 11, 12}

23

This function calls DirectedDistanceMat(d, n).m after which it parses the matrix looking
for nodes at the specified distance, D = 1 from a specified node X=01 (line 19). When
found, these nodes at D are converted to the desired base and placed into the cell array,
nodes for return. Like DirectedBallDFromX(), the cost of DirectedAtDFromX().m is,
quadratic time efficiency.

The undirected counterpart function to DirectedAtDFromX(D, X, d, n).m is
called UndirectedAtDFromX(D, X, d, n).m. This function generates a list of nodes that are
at a specified distance from a specified node also, but the list returned has more nodes in it
since the graph is undirected. This function also calls its appropriate distance matrix,
UndirectedDistanceMat(d, n).m, to assess the distances between nodes.

Returning to our radio tower scenario, where the tower configuration is modeled
after the de Bruijn network UG(2, 4). This time, imagine that the transmitter system
underwent an upgrade and so now it is capable of propogating signals at much higher
power. Our function UndirectedAtDFromX(D, X, d, n) could be utilized to determine
broadcast range from the transmitter tower, node 0000. Let us say we broadcast a signal at
four discrete and incrementally higher power levels, 1 - 4. After each transmission, we
pause and await confirmation of receipt from the other towers in our network. After our
first broadcast, at power level 1, we receive notification from towers 0001, and 1000. After
our broadcast at power level 2 we receive confirmation from 0010, 0011, 0100, 1100 as well
as those who previously acknowledged. On power level number 3 we receive notification
from towers 0101, 0110, 0111, 1001, 1010, and , 1110 as well as all those who have previously
acknowledged. Finally we broadcast at power level 4, and we receive acknowledgement
from towers 1011, 1101, and 1111 in addition to all other towers in the network (Refer to
Figure 13).

Figure 13: Radio Network DG(2, 4) showing Broadcast Distance

24

9 Conclusion
De Bruijn Graphs are a fascinating topic relevant to many fields including

computer science, graph theory, and network engineering. In this project report, we
discussed the DeBruijn library of MATLAB function used to manipulate these graphs and
generate many useful parameters that are used in turn to describe them. Among the topics
that are worth more research are improving the UD(d, n).m function to make it run more
efficiently. We sincerely believe that it can be done in linear time complexity. In fact,
making this one function more efficient would improve half of the DeBruijn library.
Another group of functions that could be much improved are those in Section 8 dealing
with locating lists of nodes within a specified distance and at a specified distance. If
improved, this would open up an opportunity to explore very large graphs of this family
which could potentially improve upon many network models.

25

10 Bibliography
[1] Joel Baker. “De Bruijn Graphs and their Applications to Fault Tolerant Networks.”
http://www.math.oregonstate.edu/~swisherh/JoelBaker.pdf.2011, [Jun 16, 2014].

[2] S. J.A. Bondy and U. S. R. Murty. "Graph Theory with Applications”. Fifth printing.
MacMillan Press Ltd. New York, Amsterdam, Oxford. 1982.

[3] Zhen LIU. "Optimal Routing in the Debruijn Networks.”
INRIA Centre Sofia Antipolis 06560 Valbonne France. 1990. pp 537-543.

[4] Manish Rastog & Brajendra Gupta. "On the Number PI an Interactive E-Module"
http://www.mathresource.iitb.ac.in/linear20algebra/FinalPi_Method/
PI-HTMLPAGE/Page02.htm

26

11 Appendix 1–Calculating Distance

11.1 Distance in Directed De Bruijn Graphs

We demonstrate here with example how to calculate distance in a directed
graph. Given the distance formula for a directed graph is

DD(X, Y) = n− l

where,
l = max{s|1 ≤ s ≤ n, xn−l+1xn−l+2 . . . xn = y1y2 . . . ys}

find DD(010, 110) in DG(2, 3). For starters, we know n = 3 because it is given in
DG(d, n). So we plug n into the equation first.

DG(2, 3) = 3− l

Now to solve for l.
l = max{s|1 ≤ s ≤ 3}

when s = 1, xn−s+1=3−1+1=3 = 0 6= y1 = 1, Fail

when s = 2, xn−s+1=3−2+1=2 = 1 = y1 = 1, Pass

but, x3 = 0 6= y2 = 1, so s=2 Fails

when s = 3, xn−s+1=3−1+1=3 = 0 6= y1 = 1, Fail

Since there are no string matches, max{s} = ∅, therefore D(010, 110) = (3)− (0) = 3.

11.2 Distance in Undirected De Bruijn Graphs

We demonstrate here using example how to calculate distance in an undirected
graph. Given the formula for finding distance in an undirected graph is

2n− 1l +min{ min
1≤i,j≤n

(i− j − li,j(X, Y)), min
1≤i,j≤n

(−i+ j − ri,j(X, Y))}

where,

li,j(X, Y) = max{s|s ≤ j, s ≤ n− i+ 1, xixi+1 . . . xi+s−1 = yj−s+1yj−s+2 . . . Yj}

ri,j(X, Y) = max{s|s ≤ i, s ≤ n− j + 1, xi−s+1xi−s+2 . . . xi = yjyj+1 . . . Yj+s−1}

find DD(010, 110) in UG(2, 3). Plugging in n we get

2(3)− 1 + min{ min
1≤i,j≤3

(i− j − li,j(X, Y)), min
1≤i,j≤3

(−i+ j − ri,j(X, Y))}

27

There are 2 ∗ 32 combinations to check. That is 9 on LHS and then 9 on the RHS.

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

To solve this problem, we are going to divide and conquer solving the inner two minimums
first.

Starting with the minimum LHS let i = 1, j = 1

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=1,j=1

(1− 1−max{s|s ≤ 1, s ≤ 3− 1 + 1})

min
i=1,j=1

(−max{s ≤ 1, s ≤ 3})

When s = 1, xi=1yj−s+1=1. Since x1 = 0 6= y1 = 1, exclude as candidate for max.
Since there is no match, max(s) = 0, mini=1,j=1(−max{s ≤ 1, s ≤ 3}) = 0

Continuing on the minimum LHS let i = 1, j = 2

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=1,j=2

(1− 2−max{s|s ≤ 2, s ≤ 3− 1 + 1})

min
i=1,j=2

(−1−max{s ≤ 2, s ≤ 3})

When s = 2, xi=1yj−s+1=2−2+1=1. Since x1 = 0 6= y1 = 1, exclude as candidate for max.
When s = 1, xi=1yj−s+1=2−1+1=2. Since x1 = 0 6= y2 = 1, exclude as candidate for max.
Since there is no match, max(s) = 0, mini=1,j=2(−1−max{s ≤ 2, s ≤ 3}) = −1

Continuing on the minimum LHS let i = 1, j = 3

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=1,j=3

(1− 3−max{s|s ≤ 3, s ≤ 3− 1 + 1})

min
i=1,j=3

(−2−max{s ≤ 3, s ≤ 3})

When s = 3, xi=1yj−s+1=3−3+1=1.Since x1 = 0 6= y1 = 1, exclude as candidate for max.
When s = 2, xi=1yj−s+1=2. Since x1 = 0 6= y2 = 1, exclude as candidate for max.
When s = 1, xi=1yj−s+1=3. Since x1 = 0 = y3 = 0, include as candidate for max.
Since there is a match, max(s) = 1, mini=1,j=3(−2−max{s ≤ 3, s ≤ 3}) = −3

28

Continuing on the minimum LHS let i = 2, j = 1

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=2,j=1

(2− 1−max{s|s ≤ 1, s ≤ 2})

min
i=2,j=1

(1−max{s ≤ 1, s ≤ 2})

When s = 1, xi=2yj−s+1=1. Since x2 = 1 = y1 = 1, include as candidate for max.
Since there is a match, max(s) = 1, mini=2,j=1(1−max{s ≤ 1, s ≤ 2}) = 0

Continuing on the minimum LHS let i = 2, j = 2

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=2,j=2

(2− 2−max{s|s ≤ 2, s ≤ 2})

min
i=2,j=2

(−max{s ≤ 2, s ≤ 2})

When s = 2, xi=2yj−s+1=1. Since x2 = 1 = y1 = 1, decrement s and continue.
s−− = 1, xi++=3yj++=2 Since x3 = 0 6= y2 = 1, exclude as candidate for max{s}. When
s = 1, xi=2yj−s+1=2. Since x2 = 1 = y2 = 1, include as candidate for max.
Since there is a match, max(s) = 1, mini=2,j=2(−max{s ≤ 2, s ≤ 2}) = −1

Continuing on the minimum LHS let i = 2, j = 3

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=2,j=3

(2− 3−max{s|s ≤ 3, s ≤ 2})

min
i=2,j=3

(−1−max{s ≤ 3, s ≤ 2})

When s = 2, xi=2yj−s+1=2. Since x2 = 1 = y2 = 1, decrement s and continue.
s−− = 1, xi++=3yj++=3 Since x3 = 0 = y3 = 0, include as candidate for max{s}. When
s = 1, xi=2yj−s+1=2. Since x2 = 1 = y2 = 1, include as candidate for max.
Since there is a match, max(s) = 2, mini=2,j=3(−1−max{s ≤ 3, s ≤ 2}) = −3

Continuing on the minimum LHS let i = 3, j = 1

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=3,j=1

(3− 1−max{s|s ≤ 1, s ≤ 1})

29

min
i=3,j=1

(2−max{s ≤ 1, s ≤ 1})

When s = 1, xi=3yj−s+1=1. Since x3 = 0 6= y1 = 1, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=3,j=1(2−max{s ≤ 1, s ≤ 1}) = 2

Continuing on the minimum LHS let i = 3, j = 2

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=3,j=1

(3− 2−max{s|s ≤ 2, s ≤ 1})

min
i=3,j=1

(1−max{s ≤ 2, s ≤ 1})

When s = 1, xi=3yj−s+1=2. Since x3 = 0 6= y2 = 1, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=3,j=2(1−max{s ≤ 2, s ≤ 1}) = 1

Continuing on the minimum LHS let i = 3, j = 3

min
1≤i,j≤n

(i− j −max{s|s ≤ j, s ≤ n− i+ 1})

min
i=3,j=3

(3− 3−max{s|s ≤ 3, s ≤ 1})

min
i=3,j=3

(−max{s ≤ 3, s ≤ 1})

When s = 1, xi=3yj−s+1=3. Since x3 = 0 = y3 = 0, include as candidate for max{s}.
Since there is a match, max(s) = 1, mini=3,j=3(−max{s ≤ 3, s ≤ 1}) = −1

Now to calculate the minimums on the RHS let i = 1, j = 1

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=1,j=1

(−1 + 1−max{s|s ≤ 1, s ≤ 3− 1 + 1})

min
i=1,j=1

(−max{s ≤ 1, s ≤ 3})

When s = 1, xi−s+1=1yj=1. Since x1 = 0 6= y1 = 1, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=1,j=1(−max{s ≤ 1, s ≤ 3}) = 0

Continuing to calculate the minimums on the RHS let i = 1, j = 2

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=1,j=2

(−1 + 2−max{s|s ≤ 1, s ≤ 3− 2 + 1})

30

min
i=1,j=2

(1−max{s ≤ 1, s ≤ 2})

When s = 1, xi−s+1=1yj=2. Since x1 = 0 6= y2 = 1, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=1,j=2(1−max{s ≤ 1, s ≤ 2}) = 1

Continuing to calculate the minimums on the RHS let i = 1, j = 3

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=1,j=3

(−1 + 3−max{s|s ≤ 1, s ≤ 3− 3 + 1})

min
i=1,j=3

(2−max{s ≤ 1, s ≤ 1})

When s = 1, xi−s+1=1yj=3. Since x1 = 0 = y3 = 0, include as candidate for max{s}.
Since there is a match, max(s) = 1, mini=1,j=3(2−max{s ≤ 1, s ≤ 1}) = 1

Continuing to calculate the minimums on the RHS let i = 2, j = 1

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=2,j=1

(−2 + 1−max{s|s ≤ 2, s ≤ 3− 1 + 1})

min
i=2,j=1

(−1−max{s ≤ 2, s ≤ 3})

When s = 2, xi−s+1=1yj=1. Since x1 = 0 6= y1 = 1, exclude as candidate for max{s}.
When s = 1, xi−s+1=2yj=1. Since x2 = 1 = y1 = 1, include as candidate for max{s}..
Since there is a match, max(s) = 1, mini=2,j=1(−1−max{s ≤ 2, s ≤ 3}) = −2

Continuing to calculate the minimums on the RHS let i = 2, j = 2

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=2,j=2

(−2 + 2−max{s|s ≤ 2, s ≤ 3− 2 + 1})

min
i=2,j=2

(−max{s ≤ 2, s ≤ 2})

When s = 2, xi−s+1=1yj=2. Since x1 = 0 6= y2 = 1, exclude as candidate for max{s}.
When s = 1, xi−s+1=2yj=2. Since x2 = 1 = y2 = 1, include as candidate for max{s}..
Since there is a match, max(s) = 1, mini=2,j=2(−max{s ≤ 2, s ≤ 2}) = −1

Continuing to calculate the minimums on the RHS let i = 2, j = 3

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

31

min
i=2,j=3

(−2 + 3−max{s|s ≤ 2, s ≤ 3− 3 + 1})

min
i=2,j=3

(1−max{s ≤ 2, s ≤ 1})

When s = 1, xi−s+1=2yj=3. Since x2 = 1 6= y3 = 0, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=2,j=3(1−max{s ≤ 2, s ≤ 1}) = 1

Continuing to calculate the minimums on the RHS let i = 3, j = 1

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=3,j=1

(−3 + 1−max{s|s ≤ 3, s ≤ 3− 1 + 1})

min
i=3,j=1

(−2−max{s ≤ 3, s ≤ 3})

When s = 3, xi−s+1=1yj=1. Since x1 = 0 6= y1 = 1, exclude as candidate for max{s}.
When s = 2, xi−s+1=2yj=1. Since x2 = 1 = y1 = 1, include as candidate for max{s}.
s−− = 1, xi++=3yj++=2. Since x3 = 0 6= y2 = 1, exclude as a candidate for max{s}.
When s = 1, xi−s+1=3yj=1. Since x3 = 0 6= y1 = 1, exclude as candidate for max{s}.
Since there is no match, max(s) = 0, mini=3,j=1(−2−max{s ≤ 3, s ≤ 3}) = −2

Continuing to calculate the minimums on the RHS let i = 3, j = 2

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=3,j=2

(−3 + 2−max{s|s ≤ 3, s ≤ 3− 2 + 1})

min
i=3,j=2

(−1−max{s ≤ 3, s ≤ 2})

When s = 2, xi−s+1=2yj=2. Since x2 = 1 = y2 = 1, include as candidate for max{s}.
s−− = 1, xi++=3yj++=3, since x3 = 0 = y3 = 0, include as a candidate for max{s}.
Since there is a match, max(s) = 2, mini=3,j=2(−1−max{s ≤ 3, s ≤ 2}) = −3

Continuing to calculate the minimums on the RHS let i = 3, j = 3

min
1≤i,j≤n

(−i+ j −max{s|s ≤ i, s ≤ n− j + 1})

min
i=3,j=3

(−3 + 3−max{s|s ≤ 3, s ≤ 3− 3 + 1})

min
i=3,j=3

(−max{s ≤ 3, s ≤ 1})

When s = 1, xi−s+1=3yj=3. Since x3 = 0 = y3 = 0, include as candidate for max{s}.
Since there is a match, max(s) = 1, mini=3,j=3(−max{s ≤ 3, s ≤ 1}) = −1

32

From LHS we have min{0,−1,−3, 0,−1,−3, 2, 1,−1} = −3,
and from RHS we have min{0, 1, 1,−2,−1, 1,−2,−3,−1} = −3
The equation simplifies to 2(3)− 1 + min{−3,−3} = 2.

33

34

	Acknowledgments
	Abstract
	Introduction
	De Bruijn Graph Fundamentals
	A Class Library to Calculate Useful Parameters of De Bruijn Graphs
	Functions to Calculate Distance Between Nodes
	Generating Other Useful Parameters
	Generating Lists of Nodes at and within Prescribed Distance
	Conclusion
	Bibliography
	Appendix 1–Calculating Distance
	Distance in Directed De Bruijn Graphs
	Distance in Undirected De Bruijn Graphs

